Transformation Utilities¶
rename_columns ¶
rename_columns(df: DataFrame, mapping: Mapping[str, str]) -> DataFrame
Rename columns according to mapping
while preserving column order.
Raises:
Type | Description |
---|---|
ValueError
|
If any source column is missing or the resulting columns collide. |
Source code in src/spark_fuse/utils/transformations.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
|
with_constants ¶
with_constants(df: DataFrame, constants: Mapping[str, Any], *, overwrite: bool = False) -> DataFrame
Add literal-valued columns using constants
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
constants
|
Mapping[str, Any]
|
Mapping of column name to literal value. |
required |
overwrite
|
bool
|
Replace existing columns when |
False
|
Raises:
Type | Description |
---|---|
ValueError
|
If attempting to add an existing column without |
Source code in src/spark_fuse/utils/transformations.py
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
cast_columns ¶
cast_columns(df: DataFrame, type_mapping: TypeMapping) -> DataFrame
Cast columns to new Spark SQL types.
The type_mapping
values may be str
or DataType
instances.
Raises:
Type | Description |
---|---|
ValueError
|
If any referenced column is missing. |
Source code in src/spark_fuse/utils/transformations.py
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|
normalize_whitespace ¶
normalize_whitespace(df: DataFrame, columns: Iterable[str], *, trim_ends: bool = True, pattern: str = _DEFAULT_REGEX, replacement: str = ' ') -> DataFrame
Collapse repeated whitespace in string columns.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
columns
|
Iterable[str]
|
Iterable of column names to normalize. Duplicates are ignored. |
required |
trim_ends
|
bool
|
When |
True
|
pattern
|
str
|
Regex pattern to match; defaults to consecutive whitespace. |
_DEFAULT_REGEX
|
replacement
|
str
|
Replacement string for the regex matches. |
' '
|
Raises:
Type | Description |
---|---|
TypeError
|
If |
ValueError
|
If any referenced column is missing. |
Source code in src/spark_fuse/utils/transformations.py
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
|
split_by_date_formats ¶
split_by_date_formats(df: DataFrame, column: str, formats: Iterable[str], *, handle_errors: str = 'null', default_value: Optional[str] = None, return_unmatched: bool = False, output_column: Optional[str] = None) -> Union[DataFrame, Tuple[DataFrame, DataFrame]]
Split df
into per-format partitions with safely parsed date columns.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
column
|
str
|
Name of the string column containing date representations. |
required |
formats
|
Iterable[str]
|
Iterable of date format strings, evaluated in order. |
required |
handle_errors
|
str
|
Strategy for unmatched rows ( |
'null'
|
default_value
|
Optional[str]
|
Fallback date string when |
None
|
return_unmatched
|
bool
|
When |
False
|
output_column
|
Optional[str]
|
Optional name for the parsed date column; defaults to |
None
|
Returns:
Type | Description |
---|---|
Union[DataFrame, Tuple[DataFrame, DataFrame]]
|
The combined DataFrame containing all parsed rows. |
Union[DataFrame, Tuple[DataFrame, DataFrame]]
|
When |
Union[DataFrame, Tuple[DataFrame, DataFrame]]
|
DataFrame as a second element. |
Raises:
Type | Description |
---|---|
TypeError
|
If |
ValueError
|
For missing columns, duplicate output column, invalid modes, or
unmatched rows when in |
Source code in src/spark_fuse/utils/transformations.py
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
|
map_column_with_llm ¶
map_column_with_llm(df: DataFrame, column: str, target_values: Union[Sequence[str], Mapping[str, Any]], *, model: str = 'gpt-3.5-turbo', dry_run: bool = False, max_retries: int = 3, request_timeout: int = 30, temperature: Optional[float] = 0.0) -> DataFrame
Map column
values to target_values
via a scalar PySpark UDF.
The transformation applies a regular user-defined function across the column, keeping
a per-executor in-memory cache to avoid duplicate LLM calls. Spark accumulators track
mapping statistics. When dry_run=True
the UDF performs case-insensitive matching
only and yields None
for unmatched rows without contacting the LLM. When targeting
models that require provider-managed sampling behaviour, set temperature=None
to
omit the temperature
parameter from LLM requests.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Input DataFrame whose values should be normalized. |
required |
column
|
str
|
Source column containing the free-form text to map. |
required |
target_values
|
Union[Sequence[str], Mapping[str, Any]]
|
List or mapping defining the set of canonical outputs. When a mapping is provided, its keys are treated as the canonical set. |
required |
model
|
str
|
Chat model (or Azure deployment name) to query. |
'gpt-3.5-turbo'
|
dry_run
|
bool
|
Skip external calls and simply echo canonical matches (useful for smoke testing and cost estimation). |
False
|
max_retries
|
int
|
Retry budget passed to :func: |
3
|
request_timeout
|
int
|
Timeout in seconds for each HTTP request. |
30
|
temperature
|
Optional[float]
|
LLM sampling temperature. Use |
0.0
|
Returns:
Type | Description |
---|---|
DataFrame
|
A new DataFrame with an additional |
DataFrame
|
the canonical value or |
Raises:
Type | Description |
---|---|
ValueError
|
If the source column is missing or |
TypeError
|
When |
Notes
- The resulting DataFrame is cached to ensure logging the accumulator values does not trigger duplicate LLM requests.
- Provide API credentials via the environment variables documented in
:func:
_get_llm_api_config
before running withdry_run=False
.
Source code in src/spark_fuse/utils/transformations.py
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 |
|